//-->
  • Anasayfa
  • Düetmatematik
  • Tarih
  • Edebiyat
  • Kimya
  • Fizik
  • Dosya Deposu
  • İngilizce
  • FORUM
  • HABERLER
  • İletişim
  • Düetmatematik
  • Düetmatematik CD
  • DüetMatematik Ücret?
  • Düetmatematik YGS
  • Düetmatematik LYS
  • Düetmatematik KPSS
  • Düetmatematik Vatandaşlık
  • Düetmatematik Coğrafya
  • Düetmatematik Geometri
  • 2012 Güncel Sorular
  • Tarih Slaytları
  • DOSYA DEPOSU




  • Matematik
  • Ygs Matematik
  • Lys Matematik
  • Geometri
  • Lise1 Matematik
  • Lise1 Matematik Ders Notları
  • Lise2 Matematik
  • Lise3 Matematik
  • Lise4 Matematik
  • Matematik MANTIK Slayt
  • Temel Sayma Kuralları
  • Anayasa
  • Yürütme
  • Yasama
  • Yargı
  • İdare
  • Türk Hukuk Tarihi
  • Ceza hukuku
  • Yönetim hukuku
  • Toprak hukuku
  • Vatandaşlık hukuk
  • Özel hukuk
  • Yargı örgütü
  • Tanzimat dönemi değerlendirilmesi
  • Vatandaşlık Dersi Notları
  • Avrupa Birliği Kronolojisi
  • Bagımsız özerk Kuruluşlar
  • Anayasa Hukuku
  • Anayasa Çeşitleri
  • Anayasa Yapılması
  • Devlet Şekilleri
  • Devlet
  • Siyasi Partiler
  • İnsan Haklarının Felsefi Gelişimi
  • Türkiyede Anayasal Gelişmeler Slayt
  • Anayasal Kavramlar Slayt
  • 1982 Anayasası Slayt
  • Anayasanın Değiştirilmesi Slayt
  • Demokrasi Slayt
  • Çıkmış Tarih Vatandaşlık Soru Slayt
  • İdari Hukuk Slayt
  • Normlar Hiyerarşisi Slayt
  • KPSS De Çıkması Muhtemel Sorular!
  • KPSS De Çıkmış Anayasa Soru-Cevap
  • Temel Yurttaşlık Bilgisi Ve İnsan Hakları
  • Anayasada 100 Soru Ve Cevap
  • KPSS Anayasa>Nokta Atış Sorular
  • Toplumsal Hayatı Düzenleyen Kurallar ve Anayasa Hukuku İle İlgili Test Soruları
  • Ders Slaytları
  • 1.Dünya Savaşı Slayt
  • 100 Soru İlkeler Slayt
  • İdari Hukuk(Merkez Teşkilatı) Slayt
  • İdari Hukuk II Slayt
  • İdari Hukuk I Slayt
  • Devlet Şekilleri Slayt
  • 1982 Anayasası II Slayt
  • 1982 Anayasası I Slayt
  • Temel Hukuk Kavramları Slayt
  • Ataturk İlkeleri Slayt
  • Çıkmış Tarih Vatandaşlık Slayt
  • Çikmıs Öss Soruları Slayt
  • Dağılma Fikir Akımları Slayt
  • Data Yayınlar Anayasa Slayt
  • Genel Kavramlar Slayt
  • Olimpiyatlar Slayt
  • Güncel Konular Slayt
  • İdare Hukuku Slayt
  • İhtiyaç Anayasa Slayt
  • İlk Çağ Medeniyetleri Slayt
  • İlköğretim Matematik Olimpiyatları Slayt
  • İnkilap Öss Slayt
  • İnkilap Tarihi Önemi Slayt
  • İnkilap Tarihi Slayt
  • İnkilap Tarihi II Slayt
  • İnkilaplar Slayt
  • İnkilaplar-İlkeler-Dış Sorun Slayt
  • İntegral Konu Anlatımı Slayt
  • İslam Tarihi Slayt
  • İslam Tarihi Slayt
  • İslam Tarihi II Slayt
  • Karmaşık Sayılar Modülü Slayt
  • Karmaşık Sayılar Slayt
  • Kpss Orta Asya Tarihi Slayt
  • Kurtuluş Savaşı Öss Soruları Slayt
  • Liderlik Tipleri Slayt
  • Limit Ve Süreklilik Slayt
  • Logaritmik fonksiyonlar Slayt
  • Logaritma Fonksiyonlarının Özellikleri Slayt
  • Logaritmik Hesabın Uygulanması Slayt
  • Cumhuriyetin İlanı Slayt
  • Mantık Slayt
  • Mantık I Slayt
  • Mantık II Slayt
  • Mantık III Slayt
  • Matematik Olimpiyat Soru ve Cevapları Slayt
  • Matematik Tanitim Slayt
  • Mevzu Hukuk Test Slayt
  • Mevzu Hukuk Test1 Slayt
  • Mevzu Hukuk Slayt
  • Mondros Ateşkes Ant Slayt
  • Normlar Hiyerarşisi Slayt
  • OGYE Tanıtım Slayt
  • Ortaçağda Avrupa Tarihi Slayt
  • Osmanlı Duraklama Öss Slayt
  • Osmanlı Kültürü Ve Medeniyeti Slayt
  • Osmanlı Kuruluş Devri Slayt
  • Tarihin Tanımı Slayt
  • Tarihi Çağlar Slayt
  • Trablusgarp Slayt
  • Trigonometry Slayt
  • Türev Alma Slayt
  • Türev(çıkmış sorular) Slayt
  • Türk Vatandaşlığı Slayt
  • Vatandaşlık Konular Slayt
  • Zeka Soruları Slayt
  • Basit Eşitsizlikler Slayt
  • Bölme-Bölünebilme Slayt
  • Çember Ve Daire Slayt
  • Çemberde Açılar Slayt
  • Çemberde Uzunluk Slayt
  • Dik Prizmalar Slayt
  • Ebob Slayt
  • Hareket Problemleri Slayt
  • Harfli İfadeler Slayt
  • Havuz Problemleri Slayt
  • Katı Cisimler Slayt
  • Kesir Problemleri Slayt
  • Özel Dörtgenler Slayt
  • Rasyonel Sayılar Slayt
  • DŁetMatematik

    PARABOL

    Polinom
    Karmaşık Sayılar
    Çarpanlara Ayırma
    Özdeşlikler 
    Logaritma
    2.Dereceden Denklemler
    Eşitsizlik
    Türev Alma
    Kuralları


    Türev Geometrik Yorum
    Maksimum Minimum
    Problemleri


    3.Dereceden
    Denklemler


    Parabol
    Trigonometri
    LYS Permutasyon
    LYS Kombinasyon

    LYS Binom






    PARABOL

     

    A. TANIM

    olmak üzere, tanımlanan
    f(x) = ax2 + bx + c biçimindeki fonksiyonlara
    ikinci dereceden bir değişkenli fonksiyonlar denir.

         

    kümesinin elemanları olan ikililere, analitik düzlemde karşılık gelen noktalara f fonksiyonunun grafiği denir.

    İkinci dereceden bir değişkenli fonksiyonların grafiklerinin gösterdiği eğriye parabol denir.

    f(x) = ax2 + bx + c fonksiyonunun grafiği (parabol), yandaki gibi kolları yukarı doğru olan ya da kolları aşağı doğru olan bir eğridir.

     

    Kural

     

      fonksiyonunun grafiğinin (parabolün);

      y eksenini kestiği noktanın; apsisi 0 (sıfır), ordinatı f(0) = c dir.

      x eksenini kestiği noktaların (varsa) ordinatları 0, apsisleri
    f(x) = 0 denkleminin kökleridir.

     

    Kural

      denkleminde,

     D = b2 – 4ac olmak üzere,

      D > 0 ise, parabol x eksenini farklı iki noktada keser.

      D < 0 ise, parabol x eksenini kesmez.

      D = 0 ise, parabol x eksenine teğettir.

     

     

    B. PARABOLÜN TEPE NOKTASI

    Şekildeki parabollerin tepe noktaları T(r, k) dir.

    Parabol x = r doğrusuna göre simetrik olan bir şekildir. Bunun için, parabolün x eksenini kestiği noktaların apsisleri olan x1 ile x2 nin aritmetik ortalaması r ye eşittir. Bu durumu kuralla ifade edebiliriz.

     

    Kural

    f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise,

     

    Sonuç

    f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise, bu parabolün simetri ekseni x = r doğrusudur.

     

    Uyarı

    f(x) = ax2 + bx + c ifadesi ikinci dereceden fonksiyonunun en genel halidir.

    Bu fonksiyon düzenlenerek f(x) = a(x – r)2 + k hâline dönüştürülürse, tepe noktasının T(r, k) olduğu görülür.

     

    Kural

    fonksiyonunun grafiğinde (parabolde),

    a > 0 ise kollar yukarıya doğru,

    a < 0 ise kollar aşağıya doğrudur.

    Buna göre, f(x) = ax2 + bx + c fonksiyonunun grafiği aşağıdaki gibidir:

     

    Parabolün en alt ya da en üst noktasına tepe noktası denir.

     

     

    C. PARABOLÜN GRAFİĞİ

    f(x) = ax2 + bx + c fonksiyonunun grafiğini çizmek için sırasıyla aşağıdaki işlemler yapılır:

    1) Parabolün eksenleri kestiği noktalar bulunur.

    2) Parabolün tepe noktası bulunur.

    3) Parabolün kollarının aşağı veya yukarı olma durumuna göre, kesim noktaları ve tepe noktası koordinat düzleminde gösterilip, bu noktalardan geçecek biçimde grafik çizilir.

     

    Kural

     A) olmak üzere, parabolün tepe noktası T(r, k) olsun.

      a < 0 ise, y alabileceği en büyük değer k dir.

      a > 0 ise, y nin alabileceği en küçük değer k dir.

     B) Parabolün tanım aralığı yani gerçel sayılar kümesi değil de [a, b] biçiminde sınırlı bir gerçel sayı aralığı ise fonksiyonun en büyük ya da en küçük elemanını bulmak için ya şekil çizerek yorum yaparız. Ya da aşağıdaki işlemler yapılır:

      f(x) in tepe noktasının ordinatı, yani k bulunur.

      f(a) ile f(b) hesaplanır.

      a. Tepe noktasının apsisi [a, b] aralığında ise; k, f(a), f(b) sayılarının, en küçük olanı f(x) in en küçük elemanı; en büyük olanı da f(x) in en büyük elemanıdır.

      b. Tepe noktasının apsisi [a, b] aralığında değil ise; f(a),
    f(b) sayılarının, küçük olanı f(x) in en küçük elemanı; büyük olanı da f(x) in en büyük elemanıdır.

     

     

    D. PARABOLÜN DENKLEMİNİN YAZILMASI

    Bir parabolün denklemini tek türlü yazabilmek için, üzerindeki farklı üç noktanın bilinmesi gerekir.

    (a, b), (m, n) ve (k, t) noktaları y = f(x) parabolü üzerinde ise;

    b = f(a), n = f(m), t = f(k) eşitlikleri kullanılarak parabolün denklemi bulunur.

     

    Kural

    x eksenini x1 ve x2 noktalarında kesen parabolün denklemi,

          f(x) = a(x – x1)(x – x2) dir.

     

    Kural

    Tepe noktası T(r, k) olan parabolün denklemi,

          y = a(x – r)2 + k dir.

     

     

    E. EŞİTSİZLİK SİSTEMLERİNİN GRAFİKLE ÇÖZÜMÜ

    Bir eşitsizliği sağlayan tüm noktaların koordinat düzleminde taranmasıyla, verilen eşitsizliğin grafiği çizilmiş olur.

    kümesinin analitik düzlemde gösterimi:

    kümesinin analitik düzlemde gösterimi:

     

    F. İKİ EĞRİNİN BİRLİKTE İNCELENMESİ

    y = f(x) ile y = g(x) eğrisinin birbirine göre üç farklı durumu vardır.

    f(x) = g(x) denkleminin, tek katlı köklerinde eğriler birbirini keser; çift katlı köklerinde birbirine teğettir. Eğer f(x) = g(x) denkleminin reel kökü yoksa, eğriler kesişmez.

    Özel olarak,

    f(x) = ax2 + bx + c parabolü ile y = mx + n doğrunun denklemlerinin ortak çözümünde elde edilen,

    ax2 + bx + c = mx + n

    ax2 + (b – m)x + c – n = 0

    denkleminin diskriminantı D = (b – m)2 – 4a(c – n) olsun.

    D > 0 ise parabol ile doğru iki farklı noktada kesişir.

    D < 0 ise parabol ile doğru kesişmez.

    D = 0 ise doğru parabole teğettir.


    Tarih
  • Tarihe Giriş
  • Yardımcı Bilimler
  • Tarih Öncesi Devirler
  • Takvim
  • İlkçağ Tarihi
  • Suriye Filistin Uygarlığı
  • İran Medeniyeti
  • İslam Öncesi Türk Tarihi
  • Diğer Türk Boy ve Devletleri
  • İslam Tarihi
  • İslam Öncesinde Dünya
  • Peygamberimiz Dönemi
  • Dört Halife Dönemi (632-661)
  • Emevi,Abbasi Ve Endülüs Emevi Devletleri
  • Türk-İslam Tarihi
  • Selçuklular
  • Beylikler
  • Kültür Ve Medeniyet
  • Toplum ve Sosyal Hayat
  • İlim-Kültür-Sanat ve Edebiyat



  • Genel
  • Siyasi Parti Üyeliği Sorgulama
  • Ygs-Lys Puan Hesaplama
  • Online Fotoğraf Düzenleme
  • Hayvanlarda Düşünme Yetisi Zeka Var Mı?
  • Dünyanın En Büyük İnsanı Kimdir?
  • Matematik Ve Yaşam
  • Allah Kelimesi Ve 19
  • Beyin mi Bilgisayar Mı?
  • Bunları Biliyormuydunuz?
  • İcatlar Kronolojisi
  • İnkılap Tarihi Kronolojisi
  • Türk-İslam Dünyası'nda Cebir
  • Paradokslar
  • Matematik Zeka Soruları1
  • Mısırda Cebir
  • Matematikçinin şiiri
  • Aritmetiğin Hataları
  • Temel Bir Aritmetik Yapıtı
  • Bütün Kuralların İstisnaları Vardır
  • Doğru Parçası Paradoksu
  • Matematik Kendini Saklamaz
  • Mükemmelimsi Sayılar
  • Tangram Şekilleri Slayt
  • Alanlarına Göre Yapılan İnkılaplar
  • İlköğretim Matematik Olimpiyatı
  • Matematik Zeka Soruları2
  • Matematik Zeka Soruları3
  • Parmaklarla Saymanın İlk Biçimi
  • Tabiattaki Sayılar
  • Yollardaki Kapaklar Neden Yuvarlaktır?
  • BASİT ŞAŞIRTMACALAR
  • Collatz Teoremi
  • e SAYISI
  • Matematiği Öğretme Yolları
  • Matematik Müfredatını Kullanmak İçin 10 Altın Kural
  • Poincare Varsayımı
  • Tıp ve Mantık
  • Beklenmeyen İdam Paradoksu
  • Çarpma Hileleri
  • Fraktallar ve Eğrelti Otu
  • Matematiğin Dili
  • Matematik Nasıl Gelişti
  • Sayma Sistemleri
  • Yalancı Paradoksu ve Otoreferans
  • Bir Evin Değerini Bulma
  • Çizginin Büyücüsü
  • Gerçek Hayattan
  • Matematiğin Doğuşu
  • Matematik Nedir, Ne Değildir?
  • Origami Nedir?
  • Saymanın Tarihi
  • Yapmak Akla Zarar
  • Matematik Zeka Soruları4
  • Bir Sayı Tut
  • Depremin Matematiği
  • İlginç Kaza
  • Matematiğin Hayatımıza Katkıları
  • Matematiksel Düşünce
  • Paradoksların Çözümü
  • Sıfır Deyip Geçme
  • Yaş Bulma Oyunu
  • Karışık Slaytlar
  • Stres Slayt
  • Aşk Slayt
  • Manzara Slayt
  • Beni Ara Slayt
  • Benzeyen Slayt
  • Bizim Hikayemiz Slayt
  • lginç Slayt
  • Cem Yılmaz Slayt
  • Çocuğunuzla İlgili Slayt
  • Hayat Slayt
  • Kağıttan Şekiller Slayt
  • İlginç Resimler Slayt
  • Fakirlik Slayt
  • Geometrik Cisimlerin Döndürülmesi
  • Gülelim Slayt
  • Gizli Resimler Slayt
  • Hayattan Slayt
  • İlizyon Slayt
  • İnadına Yaşamak Slayt
  • İsrail Gerçeği Slayt
  • İstanbul Slayt
  • İstatistik ve Grafikler Slayt
  • Karadenizli Slayt
  • Kaynana Slayt
  • Kazlar Slayt
  • Lağımcı Slayt
  • Mutluluk Slayt
  • Ne İsteriz Slayt
  • Öss Motivasyon Slayt
  • Sayı Bulma Oyunu
  • Sigara Slayt
  • 7 Saniye Slayt
  • Sihirli Sekiz Slayt
  • Temel Slayt
  • Tibet Testi Slayt
  • Size Öneriler Slayt
  • Ülkemizde Yaşanan Son Gelişmelerle İlgili Test Slayt
  • Venedikli Marangoz Slayt
  • Uzay Slayt
  • WC Slayt
  • Yunuslar Slayt
  • Yurdumdan Slayt
  • Zoom Slayt
  • Ulusal ve Uluslararası Yarışma ve Organizasyonlar Slayt
  • 3d Sokak Resimleri Slayt
  • Başarıya Adanma Slayt
  • Benim Dozerim Slayt
  • Beyin Çıtırtısı Slayt
  • Bilgisayar Olimpiyatı Slayt
  • Bilgisayarın Gerekliliği Slayt
  • Büyük ve Olumlu Düşünme Slayt
  • Çeçenistan Slayt
  • Bir İş Yerinde Etkili İletişim Slayt
  • Çocuğu Anlamak Slayt
  • Çocuk Terbiyesi Slayt
  • Deli Dana Slayt
  • Dengeli Beslenme Slayt
  • Deprem Ve İnsan Slayt
  • Dünya Hayatının Gerçeği
  • Güzel Yaşamak Slayt
  • Hayir Demek Çözum Değil Slayt
  • Hedef Belirleme Slayt
  • Hızlı Okuma Teknikleri Slayt
  • İletişim Semineri Slayt
  • İlk Yardım Slayt
  • İnsan Değerlendirme Slayt
  • İnternet Slayt
  • İrşatekseni Slayt
  • İzmir Hakkında Slayt
  • Kare Üzerinde Düşünce Oyunu Slayt
  • Kitap Okuma Slayt
  • Kitap Slayt
  • Komik Slayt
  • Kur'an İnsanı Slayt
  • Okul Dönemi Slayt
  • Olimpiyatlara Nasıl Çalışılır Slayt
  • Olumlu Düşünme Slayt
  • Olumlu Düşünmek Slayt
  • Pdr Slayt
  • Performans Değerlendirme Slayt
  • Program Geliştirme Slayt
  • Savaşçı Slayt
  • Sözlü ve Sözsüz İletişim Slayt
  • Söz Söyleme Slayt
  • TEFEKKÜR-MERHAMET-TEVHİD
  • Toplantı Yönetimi Slayt
  • Verimli Bir Toplantı Nasıl Yapılır Slayt
  • Verimli Ders Çalışma Slayt
  • Yapay Zeka Slayt
  • Yüksek Performansa Ulaşma
  • Zamanın Yönetimi Slayt
  • Banka Kartından(ATM) Ng Yükleme
  • Tasarruf Slayt
  • Flaşı Dolu Olduğu Halde Boş Görünenler Girin
  • AirSoft Artık Türkiye'de
  • => Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=